Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of replica leaf surface materials for phyllosphere microbiology.

Identifieur interne : 000A67 ( Main/Exploration ); précédent : 000A66; suivant : 000A68

Comparison of replica leaf surface materials for phyllosphere microbiology.

Auteurs : Rebecca Soffe [Nouvelle-Zélande] ; Nicola Altenhuber [Nouvelle-Zélande] ; Michal Bernach [Nouvelle-Zélande] ; Mitja N P. Remus-Emsermann [Nouvelle-Zélande] ; Volker Nock [Nouvelle-Zélande]

Source :

RBID : pubmed:31170240

Descripteurs français

English descriptors

Abstract

Artificial surfaces are routinely used instead of leaves to enable a reductionist approach in phyllosphere microbiology, the study of microorganisms residing on plant leaf surfaces. Commonly used artificial surfaces include, flat surfaces, such as metal and nutrient agar, and microstructured surfaces, such as isolate leaf cuticles or reconstituted leaf waxes. However, interest in replica leaf surfaces as an artificial surface is growing, as replica surfaces provide an improved representation of the complex topography of leaf surfaces. To date, leaf surfaces have predominantly been replicated for their superhydrophobic properties. In contrast, in this paper we investigated the potential of agarose, the elastomer polydimethylsiloxane (PDMS), and gelatin as replica leaf surface materials for phyllosphere microbiology studies. Using a test pattern of pillars, we investigated the ability to replicate microstructures into the materials, as well as the degradation characteristics of the materials in environmental conditions. Pillars produced in PDMS were measured to be within 10% of the mold master and remained stable throughout the degradation experiments. In agarose and gelatin the pillars deviated by more than 10% and degraded considerably within 48 hours in environmental conditions. Furthermore, we investigated the surface energy of the materials, an important property of a leaf surface, which influences resource availability and microorganism attachment. We found that the surface energy and bacterial viability on PDMS was comparable to isolated Citrus × aurantium and Populus × canescens leaf cuticles. Hence indicating that PDMS is the most suitable material for replica leaf surfaces. In summary, our experiments highlight the importance of considering the inherent material properties when selecting a replica leaf surface for phyllosphere microbiology studies. As demonstrated, a PDMS replica leaf offers a control surface that can be used for investigating microbe-microbe and microbe-plant interactions in the phyllosphere, which will enable mitigation strategies against pathogens to be developed.

DOI: 10.1371/journal.pone.0218102
PubMed: 31170240
PubMed Central: PMC6553772


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of replica leaf surface materials for phyllosphere microbiology.</title>
<author>
<name sortKey="Soffe, Rebecca" sort="Soffe, Rebecca" uniqKey="Soffe R" first="Rebecca" last="Soffe">Rebecca Soffe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Altenhuber, Nicola" sort="Altenhuber, Nicola" uniqKey="Altenhuber N" first="Nicola" last="Altenhuber">Nicola Altenhuber</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bernach, Michal" sort="Bernach, Michal" uniqKey="Bernach M" first="Michal" last="Bernach">Michal Bernach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Remus Emsermann, Mitja N P" sort="Remus Emsermann, Mitja N P" uniqKey="Remus Emsermann M" first="Mitja N P" last="Remus-Emsermann">Mitja N P. Remus-Emsermann</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nock, Volker" sort="Nock, Volker" uniqKey="Nock V" first="Volker" last="Nock">Volker Nock</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31170240</idno>
<idno type="pmid">31170240</idno>
<idno type="doi">10.1371/journal.pone.0218102</idno>
<idno type="pmc">PMC6553772</idno>
<idno type="wicri:Area/Main/Corpus">000856</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000856</idno>
<idno type="wicri:Area/Main/Curation">000856</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000856</idno>
<idno type="wicri:Area/Main/Exploration">000856</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparison of replica leaf surface materials for phyllosphere microbiology.</title>
<author>
<name sortKey="Soffe, Rebecca" sort="Soffe, Rebecca" uniqKey="Soffe R" first="Rebecca" last="Soffe">Rebecca Soffe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Altenhuber, Nicola" sort="Altenhuber, Nicola" uniqKey="Altenhuber N" first="Nicola" last="Altenhuber">Nicola Altenhuber</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bernach, Michal" sort="Bernach, Michal" uniqKey="Bernach M" first="Michal" last="Bernach">Michal Bernach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Remus Emsermann, Mitja N P" sort="Remus Emsermann, Mitja N P" uniqKey="Remus Emsermann M" first="Mitja N P" last="Remus-Emsermann">Mitja N P. Remus-Emsermann</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nock, Volker" sort="Nock, Volker" uniqKey="Nock V" first="Volker" last="Nock">Volker Nock</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Gelatin (MeSH)</term>
<term>Image Processing, Computer-Assisted (MeSH)</term>
<term>Microbial Viability (MeSH)</term>
<term>Pantoea (physiology)</term>
<term>Pattern Recognition, Automated (MeSH)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Surface Properties (MeSH)</term>
<term>Swine (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Gélatine (MeSH)</term>
<term>Pantoea (physiologie)</term>
<term>Propriétés de surface (MeSH)</term>
<term>Reconnaissance automatique des formes (MeSH)</term>
<term>Suidae (MeSH)</term>
<term>Traitement d'image par ordinateur (MeSH)</term>
<term>Viabilité microbienne (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Gelatin</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Pantoea</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Pantoea</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Image Processing, Computer-Assisted</term>
<term>Microbial Viability</term>
<term>Pattern Recognition, Automated</term>
<term>Surface Properties</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Gélatine</term>
<term>Propriétés de surface</term>
<term>Reconnaissance automatique des formes</term>
<term>Suidae</term>
<term>Traitement d'image par ordinateur</term>
<term>Viabilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Artificial surfaces are routinely used instead of leaves to enable a reductionist approach in phyllosphere microbiology, the study of microorganisms residing on plant leaf surfaces. Commonly used artificial surfaces include, flat surfaces, such as metal and nutrient agar, and microstructured surfaces, such as isolate leaf cuticles or reconstituted leaf waxes. However, interest in replica leaf surfaces as an artificial surface is growing, as replica surfaces provide an improved representation of the complex topography of leaf surfaces. To date, leaf surfaces have predominantly been replicated for their superhydrophobic properties. In contrast, in this paper we investigated the potential of agarose, the elastomer polydimethylsiloxane (PDMS), and gelatin as replica leaf surface materials for phyllosphere microbiology studies. Using a test pattern of pillars, we investigated the ability to replicate microstructures into the materials, as well as the degradation characteristics of the materials in environmental conditions. Pillars produced in PDMS were measured to be within 10% of the mold master and remained stable throughout the degradation experiments. In agarose and gelatin the pillars deviated by more than 10% and degraded considerably within 48 hours in environmental conditions. Furthermore, we investigated the surface energy of the materials, an important property of a leaf surface, which influences resource availability and microorganism attachment. We found that the surface energy and bacterial viability on PDMS was comparable to isolated Citrus × aurantium and Populus × canescens leaf cuticles. Hence indicating that PDMS is the most suitable material for replica leaf surfaces. In summary, our experiments highlight the importance of considering the inherent material properties when selecting a replica leaf surface for phyllosphere microbiology studies. As demonstrated, a PDMS replica leaf offers a control surface that can be used for investigating microbe-microbe and microbe-plant interactions in the phyllosphere, which will enable mitigation strategies against pathogens to be developed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31170240</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparison of replica leaf surface materials for phyllosphere microbiology.</ArticleTitle>
<Pagination>
<MedlinePgn>e0218102</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0218102</ELocationID>
<Abstract>
<AbstractText>Artificial surfaces are routinely used instead of leaves to enable a reductionist approach in phyllosphere microbiology, the study of microorganisms residing on plant leaf surfaces. Commonly used artificial surfaces include, flat surfaces, such as metal and nutrient agar, and microstructured surfaces, such as isolate leaf cuticles or reconstituted leaf waxes. However, interest in replica leaf surfaces as an artificial surface is growing, as replica surfaces provide an improved representation of the complex topography of leaf surfaces. To date, leaf surfaces have predominantly been replicated for their superhydrophobic properties. In contrast, in this paper we investigated the potential of agarose, the elastomer polydimethylsiloxane (PDMS), and gelatin as replica leaf surface materials for phyllosphere microbiology studies. Using a test pattern of pillars, we investigated the ability to replicate microstructures into the materials, as well as the degradation characteristics of the materials in environmental conditions. Pillars produced in PDMS were measured to be within 10% of the mold master and remained stable throughout the degradation experiments. In agarose and gelatin the pillars deviated by more than 10% and degraded considerably within 48 hours in environmental conditions. Furthermore, we investigated the surface energy of the materials, an important property of a leaf surface, which influences resource availability and microorganism attachment. We found that the surface energy and bacterial viability on PDMS was comparable to isolated Citrus × aurantium and Populus × canescens leaf cuticles. Hence indicating that PDMS is the most suitable material for replica leaf surfaces. In summary, our experiments highlight the importance of considering the inherent material properties when selecting a replica leaf surface for phyllosphere microbiology studies. As demonstrated, a PDMS replica leaf offers a control surface that can be used for investigating microbe-microbe and microbe-plant interactions in the phyllosphere, which will enable mitigation strategies against pathogens to be developed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Soffe</LastName>
<ForeName>Rebecca</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0003-3340-3642</Identifier>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Altenhuber</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bernach</LastName>
<ForeName>Michal</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Remus-Emsermann</LastName>
<ForeName>Mitja N P</ForeName>
<Initials>MNP</Initials>
<Identifier Source="ORCID">0000-0002-6378-9526</Identifier>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nock</LastName>
<ForeName>Volker</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9000-70-8</RegistryNumber>
<NameOfSubstance UI="D005780">Gelatin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005780" MajorTopicYN="N">Gelatin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020636" MajorTopicYN="N">Pantoea</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010363" MajorTopicYN="N">Pattern Recognition, Automated</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31170240</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0218102</ArticleId>
<ArticleId IdType="pii">PONE-D-18-34274</ArticleId>
<ArticleId IdType="pmc">PMC6553772</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Appl Microbiol. 2008 Aug;105(2):317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18284485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Microbiol. 2012 Oct;32(1):1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22850369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Aug 01;4:5925</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25081019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Aug;73(2):197-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20528987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biomed Eng. 2001;3:335-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11447067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1975 Mar;87(1):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1133575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2005 Jan;49(1):104-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2007 Apr 1;115(1):89-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17207875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2013 Jan;83(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22775757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2015 Oct;143(14):3011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25697407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Mar;168(3):621-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soft Matter. 2016 May 25;12(21):4853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27140067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2008 Mar;104(3):613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Aug;105(8):1036-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25894316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2007 Nov;3(6):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17656166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res A. 2016 Jul;104(7):1638-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26916910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2009 Oct 21;9(20):3000-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19789756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 08;9(9):e107062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25198355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25007271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2017 Oct 25;17(21):3643-3653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28959802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2012 Apr 7;12(7):1224-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22318426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Oct;15(10):546-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2005 Sep 13;21(19):8978-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16142987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Apr;6(4):756-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22258099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(7):1782-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17641645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 8;126(5):969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2014 May 7;14(9):1496-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24663505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2013 Jan;1(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23472227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Mar;19(3):407-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Dec;10(12):828-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinspir Biomim. 2008 Dec;3(4):046002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18779630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2014;43:65-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24773019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Aug;4(8):2366-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15274132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:271-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2014 Jul;16(7):2212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24373130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2011 Sep 29;2:197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22046169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Nov 9;68(19):5339-5350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29136456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soft Matter. 2015 May 14;11(18):3677-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25812667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2003;41:429-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Aug;78(16):5529-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Prot. 2012 Jul;75(7):1338-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22980021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Nov;8(11):2135-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24113786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofabrication. 2015 Apr 08;7(2):025002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25850524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2017 Oct;123(4):916-932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28708321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1958 Dec;76(6):662-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13610806</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Soffe, Rebecca" sort="Soffe, Rebecca" uniqKey="Soffe R" first="Rebecca" last="Soffe">Rebecca Soffe</name>
</noRegion>
<name sortKey="Altenhuber, Nicola" sort="Altenhuber, Nicola" uniqKey="Altenhuber N" first="Nicola" last="Altenhuber">Nicola Altenhuber</name>
<name sortKey="Bernach, Michal" sort="Bernach, Michal" uniqKey="Bernach M" first="Michal" last="Bernach">Michal Bernach</name>
<name sortKey="Bernach, Michal" sort="Bernach, Michal" uniqKey="Bernach M" first="Michal" last="Bernach">Michal Bernach</name>
<name sortKey="Nock, Volker" sort="Nock, Volker" uniqKey="Nock V" first="Volker" last="Nock">Volker Nock</name>
<name sortKey="Remus Emsermann, Mitja N P" sort="Remus Emsermann, Mitja N P" uniqKey="Remus Emsermann M" first="Mitja N P" last="Remus-Emsermann">Mitja N P. Remus-Emsermann</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31170240
   |texte=   Comparison of replica leaf surface materials for phyllosphere microbiology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31170240" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020